
W. Gaul,  

 
 
Abstract 
Let us consider n vert
joined by an edge, m
value of variable j for
the vertices of a « nea
Contiguity Analysis 
The minimization of 
analysis to the case 
derived from the obse
 
Keywords:  Contiguit
 
 
The first part of th
described by p va
The n observation
(mii' = 1 if vertice
providing a straig
defined. It permit
global level).   
The second part is
derived from the m
sketched. The idea
to the works of Ar
contribution of co
The third part dea
context, contiguity
 
 
 1. Local princ

1.1. Local varianc
y  being a random
edges, a first defin

 
The symbol  Σ(c) m
An equivalent wri
Corrected Version of the paper published under the same title , In: 
O. Opitz and M. Schader (Eds):  Data Analysis.  Springer, Berlin,  233 - 244.
 
 

Contiguity analysis and classification 
 

Ludovic Lebart  
CNRS / ENST, 46 Rue Barrault, 75013, Paris, France 

ices of a symmetric graph G whose associated matrix is M (mii' = 1 if vertices i and i' are 

ii' = 0 otherwise). These vertices are simultaneously described by p variables (xij is the 
 vertex i). Such situation occurs when vertices represent time-points, geographic areas, or 
rest neighbours graph » derived from a particular distance between observations. 
simultaneously uses the local covariance matrix C and the global covariance matrix V. 
the ratio: u'Cu / u'Vu   (u being a p-vector) provides a generalization of discriminant 

of overlapping clusters. We consider here the case of graphs that are not external, but 
rvations themselves, namely the series of nearest neighbours graphs. 

y Analysis, Graph visualization, Discriminant Analysis. 

is paper considers the case of a set of multivariate observations, (n objects 
riables, leading to a (n,p) matrix X), having an a priori graph structure. 
s are the vertices of a symmetric graph G, whose associated matrix is M 
s i and i' are joined by an edge, mii' = 0 otherwise).  Contiguity Analysis, 
htforward generalization of  Linear Discriminant Analysis, can then be 

s to point out the levels responsible of the observed patterns (local versus 

 devoted to the situation where the graph structure is not external, but 
atrix X itself. Some interesting possibilities of exploration of data are 
 of deriving a metric likely to highlight the existence of clusters dates back 
t et al. (1982) and Gnanadesikan et al. (1982). We present here the 
ntiguity analysis to such approaches. 
ls with external graphs built from a set of instrumental variables.  In that 
 analysis provides a powerful tool for analysing partial correlations. 

ipal component analysis, contiguity analysis 

e  vc(y) of a variable  y 
 variable taking values on each vertex i of a symmetric graph G, with m/2 
ition of the local variance vc(y)  is: 

( ) ( 2( )
'( ) 1/ 2c c

i iv y m y y= −∑ )

eans : sum for all i and j such that vertices i and i' are joined by an edge. 
ting, using the binary matrix M = ( mii') associated with the graph G,  is: 

1 
 



( ) ( 2
' '( ) 1/ 2c

ii i iv y m m y y= −∑ )
  
Note that if G is a complete graph  (all pairs (i,i') are joined by an edge), vc(y)  is nothing but 
v(y), the classical empirical variance. When the observations are distributed randomly on the 
graph, both vc(y)  and v(y) are estimates of the variance of y. 

The contiguity ratio c(y) (Geary, 1954), generalizing the Von Neumann ratio (1941), reads: 

c(y) = vc(y)  / v(y) 

A value of the contiguity ratio c(y) significantly lower than 1 indicates a positive spatial 
auto-correlation for the variable y. (Many more coefficients and ratios have been proposed 
in the same vein; see, e.g., Ripley, 1981 ; Cliff and Ord, 1981; Anselin, 1995). A review and 
a synthesis of various approaches can be found in Méot et al. (1993). 
An important change will be made to the definition of the coefficient c(y) to render the local 
variance compatible with the "within" variance when the graph describes a partition of 
observations (i.e. a series of complete disconnected sub-graphs, or cliques) (Mom, 1988 ; 
see also: Escofier, 1989 ; Benali and Escofier, 1990): the local variance is then defined as 
the mean squared difference between the value for a vertex and the average of its 
neighbouring values.  
 
We denote by M the (n,n) matrix associated with G having n vertices; we denote by N the 
(n,n) diagonal matrix having the degree of each vertex i as diagonal element ni (ni stands here 
for nii’). y is the vector whose i-th components is yi.  
Note that:  ni = Σi'

 mii' . 
 
The local variance will then be defined as: 

It is the average of the adjacent values of vertex i. Note that v*(y)  = vc(y)  if G is regular (i.e. 
if ni is constant). 

* 2 *

1 1
*( ) (1/ ) ( ) ,     with:    (1/ )
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The new contiguity ratio is written:     c*(y) = v*(y)  / v(y) 

 
 1.2. Bounds for c(y)  
It will be reminded in this section that the eigenvectors derived from the correspondence 
analysis (CA) of a matrix  M associated with a regular graph G have optimal properties with 
respect to the contiguity ratio.                                   
For a variable y, the coefficient c(y) is written (see Lebart, 1969): 
                           c(y)    =   y' (N - M) y  /  y' (I – (1/n)U) y  
where I is the unit (n, n) matrix, and U the  (n, n) matrix such that uij = 1, for all i and j.  
The transformed coefficient reads: 
                     c*(y)   =   y'(I - N-1M)’ ( I - N-1M) y  /  y' (I – (1/n)U) y 
We will assume in the following that y is centred to simplify the denominator. Since G is 
supposed to be regular, let us call r the number of edges of each vertex. The matrix N is a 
scalar matrix that can be written N = (1/r) I. 
Therefore :    c*(y)   =   y' (I - (1/r) M)2 y  /  y' y 
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The minimum of c*(y),  µ, is thus the smallest eigenvalue of   (I - (1/r) M)2 corresponding to 
the eigenvector  ψ such that: 
                                    (I - (1/r) M)2  ψ =  µ ψ                     
This equation  can be written : 
                                    (I - (1/r) M)  ψ =  ε√µ  ψ  
or:                                        (1/r) M ψ =  (1 - ε√µ)  ψ  
If ε = +1, the eigenvector is said to be direct, whereas if  ε = -1, it is said to be inverse 
(Benzécri, 1973). An inverse eigenvector corresponds to a negative eigenvalue of the initial 
symmetric matrix M. 
 
Note that the transition formulas corresponding to the correspondence analysis of the matrix 
M are written for the first axis : 
                                      (1/r) M φ =  ε √ λ φ                     
Since c*(y) is positive, the minimum value  µ0  corresponds to the maximum value    λmax   
for a direct eigenvector ( ε = +1). Therefore, the lower bound of c*(y) is :  
                                      Min [ c*(y) ]  =  1  - √ λmax 

That minimum is reached when ψ  is the first factor  φ  derived from the correspondence 
analysis of matrix X. Then, the sequence of the first factors   φr  corresponds to a sequence 
of  orthogonal variables  having the property of extremal contiguity. This property accounts 
for the good quality of the description of  graphs through the correspondence analysis of 
their associated matrix. It will be exemplified in the following section. 
 
1.3 A comparison with principal components analysis 
Both correspondence analysis (CA) and principal components analysis (PCA) are closely 
related to the general property of rectangular matrices known as singular value 
decomposition. Although it is clear that CA is appropriate for count data or binary data and 
PCA for real valued measurement, the user of this latter method (much more widespread) 
may legitimately ask what are the risks of false results when applying it to count or binary 
data (see: Lebart et al., 1998). Since it seems natural to calibrate visualization tools on 
artificial data sets provided with an a priori structure, we present below a comparison of the 
two methods applied to a same binary data matrix associated with a "chessboard shaped 
graph", (figure 1). In this figure, a line (an edge) drawn between two vertices means that the 
vertices are adjacent.  
 
M is the symmetric binary sparse matrix associated with the graph. Its general entry (i,j) has 
value of 1 if the edge (i,j) exists, and the value of 0 otherwise.  
 
Principal components analysis of matrix M 
In a first step, principal components analysis is applied to data matrix M. Such an analysis 
can be performed using either the covariance matrix or the correlation matrix. The numerical 
results appear to be similar in both cases, the obtained visualizations being almost identical.  
Thus the analysis involving the correlation matrix is presented here. Figure 2 shows a 
visualization of the locations of the 25 vertices in the plane spanned by the first two principal 
axes.  
These axes correspond to two identical eigenvalues (λ1 = λ2 = 3.98), explaining together 
31.86 % of the total variance. The vertices adjacent in the original graph have been joined by 
an edge to highlight the initial structure. 
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Figure 1. Graph G associated with a "chessboard" (square lattice grid) 
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Figure 2. Visualization of graph G through principal components analysis 
(plane spanned by the first two principal axes) 

 
The symmetry with respect to vertex number 13 is reconstituted. The relative locations of the 
vertices vis-à-vis their neighbours is generally taken into account by the display, with the 
exception of the four vertices corresponding to the corners of the rectangle (vertices 1, 5, 21, 
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25) that are folded back toward the center. The changes in the lengths of some edges are 
noticeable. They are characterized by a dilation of the four most central cycles of the graph.  
 

Correspondence analysis of matrix M 
Correspondence analysis is then applied to the same data matrix M. Figure 3 shows a 
visualization of the locations of the 25 vertices in the plane spanned by the first two principal 
axes. These axes also correspond to two identical eigenvalues (λ 1 = λ 2 = 0.814), explaining 
together 32.24 % of the total variance.  
Although the graph in figure 1 is somewhat conventional (it can be drawn in several possible 
ways), the display in figure 3 satisfactorily reconstitutes both the relative positions of the 
vertices and an acceptable order of magnitude for the lengths of the various edges. This 
ability of CA to produce legible maps out of such data matrices can be extended to binary 
matrices describing various planar graphs .  
Note that the calculations involved in the CA of such typical graphs could be carried out 
directly, without the help of a computer. In the case of a simpler graph (a chain) equation (1) 
above leads to a simple finite difference equation. A chessboard can then be defined as a 
« tensorial sum of chains », and the final results analytically derived from those of  the chain 
(see : Benzecri, 1973). 
 

-1.5

-1

-0.5

0.5

1

1.5

-1 -0.5 0.5 1

axis 2 

axis 1

1

2

3

4

5

6
11

16
21

22

23

24

25 20

15

10

7

8

9

12

13

14

17

18

19

 

Figure 3. Visualization of graph G through correspondence analysis 
(plane spanned by the first two principal axes) 

 

We note that the percentage of explained variance (32.24 %) is relatively modest if 
confronted with the quality of the reconstitution of the original structure in the corresponding 
plane. In CA (and in PCA as well), this phenomenon often occurs when dealing with binary 
data. In this context, the percentages of variance explained by principal axes always give a 
pessimistic view of the extracted information. Such empirical evidences favour the use of CA 
to visualize regular planar graphs known through their associated matrices. 
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1.4. Local Principal Component  Analysis 
The contiguity ratio can be generalized :  
i) to different distances between vertices in the graph,  
ii) to multivariate observations (both generalizations are dealt with in: Lebart, 1969). 
The graph corresponding to the distance defined as « the shortest path of length k between 
two vertices » is associated to the matrix M(k) – M(k-1), where M(k)  designates the k-th 
booleean power of the matrix (I + M) (I is the identity matrix, M the matrix associated 
with the graph, with zeros as diagonal elements). Therefore, it is easy to test the 
significance of spatial autocorrelation, so long as these distances on the graph remain 
meaningful. This approach provides a variant, in the discrete case, of the variogram used 
in geostatistics, as presented in the seminal papers of Matheron  (1963, 1965). 
This section is devoted to the second generalization: the analysis of sets of multivariate 
observations having an a priori graph structure. Such situation occurs frequently in 
geography, ecology, geology. The multivariate analogue of the local variance is now the 
local covariance matrix, whose elements cov(j,j') are given by (using the previously 
defined notation): 

* *
' '

1
*( , ) (1/ ) ( )( )

i n

j j i i j j
i

cov y y n y m y m
=

=

= − −∑ 2
'  

If X designates the (n,p) data matrix giving the values of the p variables for each of the n 
vertices of the graph described by its associated matrix M, the local covariance matrix can 
be written : 

V*  =  (1/n) X'( I - N-1M)’ ( I - N-1M) X 
The diagonalization of the corresponding local correlation matrix  (Local Principal 
Component Analysis) produces a description of the local correlations, which can be 
compared to the results of a classical PCA  performed with the global correlation matrix. 
Comparisons between covariance or correlation matrices (local and global) is usually 
done through Procustean Analysis (Tucker, 1958; Shönemann, 1968; Gower, 1984; 
Lafosse, 1985). 
If the graph is made of k disjoined complete subgraphs, V* coincide with the classical 
"within covariance matrix" used in linear discriminant analysis. 
  
1.5. Contiguity Analysis 
Let u be a vector defining a linear combination u(i) of the p variables for vertex  i: 
                              u(i) = Σj uj yij  =  u'yi 
The local variance of the artificial variable u(i) is then : 
                              v*(u)  =  u' V* u  
The Geary coefficient of this linear combination can be written : 
                             c*(u)   =  u' V* u  / u' V u                          
where V is the classical covariance matrix of vector y. 
The search for u that minimizes c*(u) produces functions having the properties of 
"minimal contiguity": these functions are, in a sense, the linear combinations of variables 
the more continuously distributed on the graph.  
Instead of assigning an observation to a specific class, (as it is done in classical 
discriminant analysis) these functions allows one to assign it in a specific area of the 
graph. Therefore, this technique (designated as Contiguity Analysis)  can be use to 
discriminate between overlapping classes, provided that the relationships between 
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observations are described by a graph. Faraj (1993) has proposed to use it to discriminate 
simultaneously between several categorical variables, and Chateau (1999) suggests to use 
it when the classes have an a priori structure. Computer programs and examples of 
contiguity analysis can be found in Lebart and Tabard (1973).  
 
 2. Contiguity analysis and nearest neighbours graphs 
The preceding results can be applied and enriched in several manners.  
It is easy to derive a contiguity matrix from the basic data array itself: any threshold 
applied to the set of n(n-1)/2 distances or similarities between observations allows one  to 
define a binary relationship, and, as an immediate consequence, a graph. 
Another series of contiguity matrices can be derived, for instance, from the k nearest 
neighbours of each observation (k varying from 1 to  n-1). 
 

 
 
 
 
 
 
 
 
 
 

d 

 
 
 
 
 

The distance threshold  d0 must be lower than d to allow 
for the unfolding of the scattering diagram through 
contiguity analysis 

Figure 4 :  Unfolding through contiguity analysis 

 
If the scattering diagram of n points described by p variables is concentrated in the p-

dimensional space around  a folded  hypersurface as shown in Figure 4, a graph G can be 
derived with associated matrix M such as mii' = 1 if the observations (vertices of the graph)  
i et i' are at a distance less than d, mii' = 0 otherwise. 

Section 1.2  suggests that the correspondence analysis of such matrix M will unfold the 
diagram since there are no edge joining the two main branches of the horseshoe. Contiguity 
analysis performs a similar unfolding, since the distant observations are ignored in 
computing the local covariance matrix. It can be considered as a particular projection pursuit 
algorithm (Burtschy and Lebart (1991). 
 
The term "projection pursuit" was coined by Friedman and Tukey (1974) to name a 
technique for revealing structure in the original data by offering selected low-dimensional 
subspaces for inspection. In section 1.5, an algorithm for attempting this goal was presented. 
This algorithm can be adapted as follows, X designating the matrix of standardized 
observations: 
 
a) Determine the contiguity matrix M either by applying a threshold to the set of n (n-1) 
similarities or distances between observations (n rows of matrix X), or by selecting a fixed 
number of nearest neighbours for each observation. 
 
b) Compute the local covariance matrix V* and the global covariance matrix V (the matrix 
N and the integer m being defined as above, section 1.2) 
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c) Find the set of V-orthogonal vectors uα that maximize the criterion  c such as: 

 c =     uα'V*uα / uα'Vuα 
This algorithm is based, as the usual projection pursuit algorithms, on the search for the 

most interesting q-dimensional linear projections of the initial p-dimensional data.  
 Another technique consists of using the complete graph G* (each pair of vertices are 

joined by an edge) whose edges are weighted by a decreasing function of the distances 
between the corresponding vertices. The edge (i,i'), for example, could be given the weight  
mii'  = Log (1 + dii'/d) / Log2  (d= max {dii'} for every i and i'). However, it is no more 
possible, then, to use the sparsity of the matrix M to reduce the amount of calculation 
(Enyukov 1988, Caussinus and Ruiz, 1990) 
 
2.1 Selecting the best contiguity graph 
 
Contiguity Analyses have been performed on the classical Fisher's IRIS data set, using 
different graphs according to the number of kept nearest neighbours. 
The IRIS data set contains 150 individuals corresponding to three species, each species being 
represented by 50 observations. 
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Figure 5 : Contiguity graphs and ratios as functions of the number of N.N. 
 
Comments about Figure 5  
The horizontal axis represents the number k of nearest neighbours kept in the contiguity 
graph (varying from 4 to 149). Four curves are shown. 
- The black diamond shaped symbol curve, close to the first diagonal of the rectangular 
frame, describes the proportion of vertices of the graphs, with reference to a complete graph, 
having n(n-1) vertices. This proportion is a function approximately linear of the number of 
nearest neighbours. 
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- The curve having white triangular symbols, below the preceding one, represents the 
smallest eigenvalue of c*(u) = u'V*u/u'Vu, that is the smallest contiguity ratio of a linear 
combination of the 4 original variables. An angle in the trajectory is discernable for about 50 
nearest neighbours, as well as around 100 nearest neighbours. The fact that, in the Iris data 
set, a group of 50 observations is located far apart from the others accounts for the observed 
angle in that curve.  
- The curve without symbol immediately below the previous one is the trajectory of the 
minimum contiguity ratio Min [ c*(u) ], as given by the CA of the matrix M associated to the 
k nearest neighbours graph. 
- Finally, the only decreasing curve of the display represents the first eigenvalue λmax of the 
CA of M  (each point is then produced by the diagonalization of a (150, 150) matrix). This 
information is equivalent to that given by the curve Min [ c(y) ] , since Min [ c(y) ] = 1- 
√λmax, but the isolation of one group of observations is all the more evident here: the 
eigenvalue 1 appears in CA when the graph is broken down into non-connex components 
(see, e.g., Lebart and Mirkin (1993)). Thus, the marked decrease of the curve beyond 
approximately 50 neighbours pinpoints the existence of an isolated group. 
 
A criterion using the a priori knowledge (labels) about the groups  
 
Figure 6 shows the trajectory of a criterion, designated by W/T (variance within groups 
divided by total variance). 
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          Figure 6 : Criterion W/T (first axis) as a function of the number of N.N. 
 
 
This criterion takes into account the labels of the observations. It has been computed for the 
first principal axis derived from each Contiguity Analysis. It is shown here as a function of 
the number of nearest neighbours kept. 
The bold horizontal straight line corresponds to the value of the criterion (0.030) derived 
from a Fisher Discriminant Analysis on the same data set. Evidently, the first principal axis 
of a contiguity analysis that ignores the labels of the observations cannot compete with the 
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first discriminant function that makes use of these labels and that aims precisely at 
minimizing the criterion W/T. 
The dotted horizontal straight line corresponds to the value of the criterion (0.063) derived 
from a Principal Component Analysis of the data set. It can be seen that the trajectory of the 
criterion is located below this dotted line for numbers of nearest neighbours comprised within 
the range [4, ..., 70]. A conservative estimate of this range [4, ..., 40] is given by the values 
preceding the angles in the curves of the contiguity ratios in Figure 5. The minimum value is 
0.0365, closer to the theoretical minimum 0.030 than the value of the criterion given by the 
PCA.  
In fact, this theoretical minimum is abnormally small, being a resubstitution estimate (i.e. an 
estimate computed on the training sample) that gives an overly optimistic view of the quality 
of the discrimination. Thus the smaller values of the criterion derived from Contiguity 
Analysis are all the more acceptable. 
 
Discussion 
One must keep in mind that each point of the displays in Figure 5 and 6 corresponds to a low-
dimensional display of the data (1, 2 or 3 dimensions). These displays are not exhibited here 
for lack of space. They constitute however the most interesting output for the user. Those 
representations that relate to the lowest values of the criterion W/T are similar to the display 
derived from Fisher discriminant analysis. 
Such representations are associated to a number of nearest neighbours selected from the 
trajectory either of the contiguity ratio or of the minimum contiguity ratio (Figure 5), without 
using the a priori information about the classes. In terms of learning theory, we are dealing 
with an unsupervised method. 
Why using nearest neighbours graphs instead of graphs derived from distance thresholds? 
Several experiments show that the latter graphs are often disconnected (except for large 
values of the threshold, that may not favour the discovery of small clusters). Moreover, 
external criterions such as W/T are generally less close to the theoretical minimum than those 
provided by nearest neighbours contiguity graphs (for the Iris data set, the minimum value of 
W/T is 0.044 when using a distance threshold contiguity matrix).  
In conclusion, the non-parametric approach involving a local covariance matrix derived from 
the series of nearest neighbours graphs allows us to:  
- detect potential clusters, after the selection of the appropriate number of nearest neighbours,  
- obtain simultaneously a visualization of observations and of potential clusters. 
- deal with a classical linear discriminant analysis when the contiguity graph is external 
(graph associated with an a priori partition). 
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